The paper presents results of finite element analysis of architectured iron-based shape memory alloy (SMA) samples consisting of bulk SMA and void combined to different proportions and according to different geometric patterns. The finite element simulation uses a constitutive model for iron-based SMAs that was recently developed by the authors in order to account for the behavior of the bulk material. The simulation of the architectured SMA is then carried out using a unit cell method to simplify calculations and reduce computation time. For each unit cell, periodic boundary conditions are assumed and enforced. The validity of this assumption is demonstrated by comparing the average behavior of one unit cell to that of a considerably larger sample comprising multiple such cells. The averaging procedure used is implemented numerically, by calculating volume averages of mechanical fields such as stress and strain over each finite element model considered as a combination of mesh elements.

This content is only available via PDF.
You do not currently have access to this content.