Self-healing material structures with the inherent capability to mend damage will lead to a paradigm shift in design as fracture may no longer constitute a failure. Generally, there are two techniques of self-healing that operate at different scales, require different approaches and often are dealt with separately; geometric restoration and crack filling/bonding. Geometric restoration uses shape memory materials that can mechanically close fractures after they occur. Crack filling and bonding fills and chemically bonds fractured parts in place.

Materials capable of recovering from complete fractures, that have propagated across the entire component, have typically taken a sparse fiber composite form with a structural matrix encapsulating shape memory fibers. This form of self-healing material has demonstrated the ability recover original bulk geometry. However, lacking bonding, the healed structures have not had the ability to resist subsequent externally applied loads without re-opening the crack.

A new approach of pre-straining the shape memory fibers before curing them in a matrix in the pre-strained state is presented in this paper with basic theory and experimental results. Pre-straining the shape memory fibers before casting them in the matrix causes them to undergo constrained recovery upon activation. Thus, the samples create closing loads across the crack which are capable of withstanding external loads without re-opening.

This content is only available via PDF.
You do not currently have access to this content.