To continue to meet spacecraft systems ever increasing thermal management requirements, new control methods need to be developed. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This paper is focused on the development of a thermal management metamaterial that enables the active and passive control of a metamaterial’s thermal conductance. This variable conductivity is achieved through the application of internally or externally applied loads that induce internal contact resulting in changes in the conductive path length and the effective conductive area. This capability enables active or passive control of a metamaterial’s effective thermal conduction through the application of mechanical and thermal strain. Passively applied thermal strains can be used to design a highly nonlinear material thermal conductivity as a function of temperature. Actively, this can be used to precisely control the temperature of an interface through dynamically changing the instantaneous heat flux through the metamaterial. This work expands on the field of thermal switches by enabling a non-binary configuration where the initial air gap is slowly closed as contact sequentially introduced into the metamaterial. As internally or externally developed loading is applied, contact is introduced with an increasing contact area until full contact is achieved. This intermediate step of partial contact enables unique design capabilities that enable highly nonlinear thermal conductivity as a function of temperature as well as stability regions that allow passive thermal control. An example metamaterial was developed and evaluated to quantify the potential of this concept. The specific metamaterial configuration assessed in this paper uses offset flat and curved copper plates that are connected at the edges of the plate using a low conductivity epoxy. To evaluate the metamaterial performance, the stiffness and thermal conductivity are calculated as a function of the resulting contact area and the required applied loading. This work is focused on determining the potential of this metamaterial concept by evaluating this initial concept confirmation to establish the magnitude of the thermal conductance change, and the design of the conductivity change a function of applied loading.

This content is only available via PDF.
You do not currently have access to this content.