In this study, 3D printed magnetorheological (MR) elastomer has been characterized through a force vibration testing. The 3D printed MR elastomer is a composite consisting three different materials, magnetic particles and two different elastomers. The MR elastomers were printed layer-by-layer by encapsulating MR fluid within the polymeric elastomer and then allowed to cure at room temperature. The 3D printing allowed to print various patterns of magnetic particles within the elastomeric matrix. In the presence of an external magnetic field, both elastic and damping properties of the 3D printed MR elastomers were changed. Natural frequency, stiffness, damping ratio, damping coefficient, and shear modulus were increased with increasing magnetic field. For the single degree-of-freedoms system, shear mode MR elastomers suppressed the transmitted vibration amplitude up to 31.4% when the magnetic field was 550 mT. The results showed that the 3D printed MR elastomer could be used as a tunable spring element for vibration absorption or isolation applications. However, further optimization of the magnetic particles’ configurations should be performed to obtain the higher MR effect.

This content is only available via PDF.
You do not currently have access to this content.