This work aims to investigate how bio-inspired morphing wings built with state-of-the-art materials affect the aerodynamics and extend the range of flight conditions. In particular, this study investigates the aerodynamic effects of coupled airfoil and planform sweep morphing. The morphed geometries were chosen to resemble a current morphing design that uses Macro Fiber Composites (MFCs) and Shape Memory Alloy (SMA) wires. The primary mode of camber actuation is achieved using the MFCs which are supplemented using antagonistic SMA wires, forming a hinge ahead of the MFCs. The SMA hinge also allows for bi-directional actuation, resulting in a reflexed airfoil. Numerical simulations were conducted using a Reynolds-averaged-Navier-Stokes (RANS) turbulence model for low-Reynolds-number flow, in addition to wind tunnel experiments. Nine different wing configurations were considered consisting of combinations of 3 sweep angles and 3 airfoil profiles, including unactuated (baseline), monotonic camber actuation, and reflex actuation. These geometries were 3D printed on a high resolution printer. Tests were conducted in a 2 ft. × 2 ft. wind tunnel at the University of Michigan at a flow speed of 10 m/s, consistent with the flow regime expected for this scale of aircraft. The preliminary results suggest a definite improvement in flight performance associated with the proposed coupling.

This content is only available via PDF.
You do not currently have access to this content.