In most cases the electrical behavior of dielectric elastomer (DE) transducers is modeled by an equivalent circuit with lumped electrical parameters. Here, the capacitance is obtained under consideration of the active area of the whole DE transducer, while additional parallel and series resistances model the losses in the dielectric and the electrode respectively. Since this represents a quite simple modeling approach it is very common. However, in general a DE transducer has a certain spatial distribution depending on the design of the considered transducer. Thus, a model with lumped parameters might be inaccurate and does not take into account the field-distribution within the DE transducer. Since no analytical expression of the field-distribution can be derived by solving the partial differential equations for diagonal-edge contacts, within this contribution an electrical network model for a multilayer DE stack-transducer is presented. This model takes into account the influence of the contacting of each single transducer film as well as the electrical interaction of these films and their spatial distribution. Based on this model the influence of different design parameters can be investigated, resulting in design rules for the considered transducers with both optimized transient and static behavior.
Skip Nav Destination
ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 28–30, 2016
Stowe, Vermont, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5048-0
PROCEEDINGS PAPER
Modeling Approach for the Electrodynamics of Multilayer DE Stack-Transducers
Thorben Hoffstadt,
Thorben Hoffstadt
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Search for other works by this author on:
Philip Meier,
Philip Meier
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Search for other works by this author on:
Jürgen Maas
Jürgen Maas
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Search for other works by this author on:
Thorben Hoffstadt
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Philip Meier
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Jürgen Maas
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Paper No:
SMASIS2016-9327, V001T02A015; 8 pages
Published Online:
November 29, 2016
Citation
Hoffstadt, T, Meier, P, & Maas, J. "Modeling Approach for the Electrodynamics of Multilayer DE Stack-Transducers." Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring. Stowe, Vermont, USA. September 28–30, 2016. V001T02A015. ASME. https://doi.org/10.1115/SMASIS2016-9327
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Dynamic Modeling Framework for Evaluating Electromagnetic-Electro-Thermal Behavior of Power Conversion System During Load Operation
J. Electron. Packag (June,2023)
Void Detection in Dielectric Films Using a Floating Network of Substrate-Embedded Electrodes
J. Electron. Packag (December,2014)
Linear Fluid Resistance Using Switching Valves and a Tank
J. Dyn. Sys., Meas., Control (December,1981)
Related Chapters
Analysis for the Influence of Inductance Value on DCM Boost Converter
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
Spice Model on High Frequency Vibration for CMUT Application
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Review of Continuum Electrodynamics
Vibrations of Linear Piezostructures