In this work, the time and frequency response of VO2-based MEMS mirrors are characterized across the transition for individual and simultaneous actuation. First, a step input train of increasing amplitude are applied to the device up to the point of transition is reached. Second, the frequency response is measured by applying a small sinusoidal input, where the displacement remained inside the hysteresis of the VO2. The frequency of the input varied from 0.1 to 2000 Hz. The thermal dynamics of the device is found to be the factor limiting the device’s band-width to less than 10 Hz. The average resonant frequency of the present VO2-based MEMS mirror was found to be 412.5 Hz for individual actuation. These results allow for the extraction of the necessary parameters to create a model that can be used to design devices with specific dynamic performance.

This content is only available via PDF.
You do not currently have access to this content.