This work explores incorporating ferrofluids with droplet interface bilayer (DIB) membranes. Ferrofluids contain magnetic nanoparticles in solution with a stabilizing surfactant, providing a magnetically-responsive fluid. These fluids allow for remote mechanical manipulation of ferrofluid droplets through magnetic fields, and will allow for better control over the characteristics of networks of stimuli-responsive cellular membranes created through by DIB technique.

This work involves several phases. First, a suitable biocompatible ferrofluid is synthesized, containing a neutral pH and a biocompatible surfactant. Once a proper ferrofluid is identified, it is tested as the aqueous phase for the creation of DIB membranes. Interfacial membranes between ferrofluid droplets are created and compared to non-ferrofluid DIB membranes. The interfacial membrane between two ferrofluid droplets was tested for leakage and stability, and the electrical characteristics of the interfacial membrane were studied and compared to non-ferrofluid DIB membranes.

Once it is confirmed that the ferrofluid droplets do not negatively interfere with the formation of the artificial cellular membranes through the electrical measurements, the magnetically-responsive nature of the ferrofluid droplets are used to form large networks of DIB membranes through a simple magnetic field. These networks are easy to assemble and may be remotely manipulated, providing a significant step towards the rapid and simple assembly of DIB networks advancing towards the tissue scale.

This content is only available via PDF.
You do not currently have access to this content.