In the last two decades it has been proposed to use actuation forces of shape memory alloy wires to develop an active needling tool to facilitate the conventional needle-based procedures. In these procedures it is always desired to guide the needle though an accurate trajectory reaching the target location. In some cases it is also desired to maintain a curved path to avoid obstacles and prevent damage to sensitive organs. Therefore, it is of a great importance to investigate the interactions of needle within tissue and understand the mechanics of the needle insertion procedure. The nonlinear properties of the deforming tissue while needle is inserted make the prediction of the needle tip placement difficult. Previous studies include experimental and analytical investigations based on a particular tissue properties and needle shape. In this work mechanics of a bevel-tipped needle inserted into soft tissue has been investigated via numerical simulation. The nonlinear properties of the tissue have been implemented in the model. This model has been generated in LS-DYNA software using Arbitrary-Eulerian-Lagrangian formulation for the solid-fluid interactions. Total insertion depth of 150mm of a 0.5mm diameter needle has been modeled. The small stiff element sizes of the needle dictate an expensive computational time. In order to have reasonable computational costs many assumptions were made such as decreasing the Young’s Modulus of the needle and tissue by the same factor. Needle insertion tests have also been performed to evaluate the accuracy of the simulations. The error of less than 10% was found and therefore validated our simulation approach. Using this model it would be possible to predict the steerability of different configurations of the needle inside the tissue. It can also be used for surgical simulation and training purposes and path planning.
Skip Nav Destination
ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2015
Colorado Springs, Colorado, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5729-8
PROCEEDINGS PAPER
A Real-Time Simulation for Path Planning in Needle Insertion Tasks
Bardia Konh,
Bardia Konh
Temple University, Philadelphia, PA
Search for other works by this author on:
Parsaoran Hutapea
Parsaoran Hutapea
Temple University, Philadelphia, PA
Search for other works by this author on:
Bardia Konh
Temple University, Philadelphia, PA
Parsaoran Hutapea
Temple University, Philadelphia, PA
Paper No:
SMASIS2015-9086, V001T03A027; 5 pages
Published Online:
January 11, 2016
Citation
Konh, B, & Hutapea, P. "A Real-Time Simulation for Path Planning in Needle Insertion Tasks." Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems. Colorado Springs, Colorado, USA. September 21–23, 2015. V001T03A027. ASME. https://doi.org/10.1115/SMASIS2015-9086
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
Shape Memory Alloy Clip for Compression Colonic Anastomosis
J Biomech Eng (April,2005)
Mechanical Characterization of Anisotropic Planar Biological Soft
Tissues Using Large Indentation: A Computational Feasibility
Study
J Biomech Eng (June,2006)
Development and Validation of a Three-Dimensional Finite Element Model of the Face
J Biomech Eng (April,2009)
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Introduction and Scope
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)