Transducers based on dielectric electroactive polymers (DEAP) gained a lot of attention within the last years. By applying an electric field, the elastomer material, coated with compliant electrodes on its opposing surfaces, deforms. Due to this electromechanical coupling DEAP transducers are predestined for generator and actuator applications. However, to increase the absolute energy gain or the actuation, multilayer DEAP transducers are used. To withstand tensile forces a reliable adhesion between the single layers of the transducer is mandatory. If the transducer is made from high-quality pre-fabricated polymer films it is preferable to laminate the layers without glue in order to keep the processing steps simple and fast. Therefore, within this publication the adhesion between the material surfaces is theoretically and experimentally investigated. For this purpose, different adhesion theories are studied based on the properties of polymers. In particular, the adsorption theory is theoretically considered in more detail and used to determine the surface energy experimentally for different elastomer materials. By using the obtained surface energies, models are derived to describe the adhesion between them. Finally, the adhesion is experimentally investigated by corresponding experiments.
Skip Nav Destination
Close
Sign In or Register for Account
ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2015
Colorado Springs, Colorado, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5729-8
PROCEEDINGS PAPER
Investigation of the Adhesion Properties of Laminated Multilayer-Actuators Based on DEAP Material
Kai Bokermann
,
Kai Bokermann
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Search for other works by this author on:
Jürgen Maas
Jürgen Maas
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Search for other works by this author on:
Kai Bokermann
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Jürgen Maas
Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany
Paper No:
SMASIS2015-8985, V001T02A008; 9 pages
Published Online:
January 11, 2016
Citation
Bokermann, K, & Maas, J. "Investigation of the Adhesion Properties of Laminated Multilayer-Actuators Based on DEAP Material." Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems. Colorado Springs, Colorado, USA. September 21–23, 2015. V001T02A008. ASME. https://doi.org/10.1115/SMASIS2015-8985
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
7
Views
0
Citations
Related Proceedings Papers
Related Articles
Electrostatic Forces
and Stored Energy for Deformable Dielectric
Materials
J. Appl. Mech (July,2005)
Bioactive Magnetoelastic Materials as Coatings for Implantable Biomaterials
J. Med. Devices (June,2009)
Characterization of Chitosan Coated Magnetoelastic Materials for Use in Percutaneous Implants
J. Med. Devices (June,2008)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Stiffening Mechanisms
Introduction to Plastics Engineering
Research on Residual Vibration Suppression of Trajectory Glue Based on Adaptive Pulse Reshape Filter
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)