Deformation behavior of a capsule-type micro actuator using palladium as a hydrogen storage alloy was investigated. The capsule-type micro actuator using hydrogen storage alloys (HSA-CMA) drives by the volume change of the hydrogen storage alloy induced by the absorption and discharge of hydrogen gas. It was developed as a compact, lightweight and energy-saving actuator mounted on the super multi-link manipulator to capture space debris. In the present work, a palladium foil was used as the hydrogen storage alloy. It was confirmed that the actuator of 10 mm in diameter fabricated with palladium has deformed by the introduction and evacuation of hydrogen gas. The height change and deformation rate have increased with the cycle between hydrogen introduction and evacuation.

This content is only available via PDF.
You do not currently have access to this content.