A theoretical investigation of the dynamic response of a pair of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under the presence of an alternating current (AC) electric field is presented. The proposed modeling strategy is based on the dielectrophoretic (DEP) theory and classical electrodynamics, and considers the effect of an applied AC electric field on the rotational and translation motion of interacting CNTs represented as electrical dipoles. The mutual interaction between a pair of adjacent CNTs stems from the presence of DEP-induced charges on the CNTs and, as such, contributes to the rotational and translational dynamics of the system. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs motion are investigated for different initial configurations. Based on the obtained results, it is here predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of CNTs immersed in solvents of high polarity promote faster rotational and translational motion and therefore faster equilibrium conditions (CNT tip-to-tip contact and horizontal alignment). The results incorporate important knowledge towards a better understanding of the complex mechanisms involved in the efforts of tailoring CNT networks by electric fields.
Skip Nav Destination
ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2015
Colorado Springs, Colorado, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5729-8
PROCEEDINGS PAPER
Modeling the Electric Field-Guided Motion of Interacting Carbon Nanotubes Using a Dielectrophoretic Framework Available to Purchase
A. I. Oliva-Avilés,
A. I. Oliva-Avilés
Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico
Search for other works by this author on:
F. Avilés,
F. Avilés
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
Search for other works by this author on:
V. V. Zozulya
V. V. Zozulya
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
Search for other works by this author on:
A. I. Oliva-Avilés
Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico
F. Avilés
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
V. V. Zozulya
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
Paper No:
SMASIS2015-8911, V001T01A005; 9 pages
Published Online:
January 11, 2016
Citation
Oliva-Avilés, AI, Avilés, F, & Zozulya, VV. "Modeling the Electric Field-Guided Motion of Interacting Carbon Nanotubes Using a Dielectrophoretic Framework." Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems. Colorado Springs, Colorado, USA. September 21–23, 2015. V001T01A005. ASME. https://doi.org/10.1115/SMASIS2015-8911
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
J. Heat Transfer (April,2007)
Measurement of Thermal and Electrical Properties of Multiwalled Carbon Nanotubes–Water Nanofluid
J. Heat Transfer (July,2016)
Microstructural Design of Graphene Nanocomposites for Improved Electrical Conductivity
J. Eng. Mater. Technol (October,2021)
Related Chapters
Mathematical Background
Vibrations of Linear Piezostructures
Glossary of Terms
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Handy Facts Regarding Types of Thermal Insulation
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1