Persons with transfemoral and transtibial protheses experience changes in the volume of their residual limb during the course of the day. These changes in volume unavoidably lead to changes in quality of fit of the prosthesis, skin irritations, and soft tissue injuries. The associated pain and discomfort can become debilitating by reducing one’s ability to perform daily activities. While significant advancements have been made in prostheses, the undesirable pain and discomfort that occurs due to the volume change is still a major challenge that needs to be solved. The goal of this program is to develop smart prosthetic sockets that can accommodate for volume fluctuations in the residual limb. In this research, fluidic flexible matrix composite wafers (f2mc) are integrated into the prosthetic socket for volume regulation. The f2mc’s are flexible tubular elements embedded in a flexible matrix. These tubular elements are connected to a reservoir, and contain an internal fluid such as air or water. Fluid flow between the tubes and reservoir is controlled by valves. The f2mc’s can achieve more than 300% increase in volume and potentially several orders of magnitude of change in stiffness. Experimental results for a prosthetic socket demonstrate that the flexible matrix composite wafers can achieve changes in volume when pressurized.

This content is only available via PDF.
You do not currently have access to this content.