Macro-fiber composite (MFC) actuators offer simple and scalable design, robustness, noiseless performance, strong electromechanical coupling, and particularly a balance between the actuation force and deformation capabilities, which is essential to effective and agile biomimetic locomotion. Recent efforts in our lab have shown that MFC bimorphs with polyester electrode sheets can successfully be employed for fish-like aquatic locomotion in both tethered and untethered operation. MFC swimmers can outperform other smart material-based counterparts, such as the compliant ionic polymer-metal composite based swimmers, in terms of swimming speed per body length. Cantilevered flaps made of MFC bimorphs with different aspect ratios can be employed for underwater actuation, sensing, and power generation, among other aquatic applications of direct and converse piezoelectric effects. In an effort to develop linearized electrohydroelastic models for such cantilevers, the present work investigates MFC bimorphs with three different aspect ratios. The MFCs used in this study use the 33-mode of piezoelectricity with interdigitated electrodes. Underwater dynamic actuation frequency response functions (FRFs) of the MFCs are defined as the tip velocity per actuation voltage (tip velocity FRF) and current consumption per actuation voltage (admittance FRF). The tip velocity and admittance FRFs are modeled analytically for in-air actuation and validated experimentally for all aspect ratios. Underwater tip velocity and admittance FRFs are then derived by combining their in-air counterparts with corrected hydrodynamic functions. The corrected hydrodynamic functions are also identified from aluminum cantilevers of similar aspect ratios. Both tip vibration and current consumption per voltage input are explored. The failure of Sader’s hydrodynamic function for low length-to-width aspect ratios is shown. Very good correlation is observed between model simulations and experimental measurements using aspect ratio-dependent, corrected hydrodynamic function.
Skip Nav Destination
ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 8–10, 2014
Newport, Rhode Island, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4615-5
PROCEEDINGS PAPER
Underwater Dynamic Actuation of Macro-Fiber Composite Flaps With Different Aspect Ratios: Electrohydroelastic Modeling, Testing, and Characterization
Shima Shahab,
Shima Shahab
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Alper Erturk
Alper Erturk
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Shima Shahab
Georgia Institute of Technology, Atlanta, GA
Alper Erturk
Georgia Institute of Technology, Atlanta, GA
Paper No:
SMASIS2014-7538, V002T06A007; 9 pages
Published Online:
December 8, 2014
Citation
Shahab, S, & Erturk, A. "Underwater Dynamic Actuation of Macro-Fiber Composite Flaps With Different Aspect Ratios: Electrohydroelastic Modeling, Testing, and Characterization." Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting. Newport, Rhode Island, USA. September 8–10, 2014. V002T06A007. ASME. https://doi.org/10.1115/SMASIS2014-7538
Download citation file:
28
Views
Related Proceedings Papers
Nonlinear Structural Dynamics of Macro-Fiber Composite Cantilevers for Resonant Actuation
SMASIS2017
Characterization of a Multifunctional Bioinspired Piezoelectric Swimmer and Energy Harvester
SMASIS2020
Related Articles
Electrostatic Forces
and Stored Energy for Deformable Dielectric
Materials
J. Appl. Mech (July,2005)
Mechanical Properties of Prismatic Li-Ion Batteries—Electrodes, Cells, and Stacks
J. Electrochem. En. Conv. Stor (November,2022)
A Novel Transparent Glass Fiber-Reinforced Polymer Composite Interlayer for Blast-Resistant Windows
J. Eng. Mater. Technol (July,2016)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2