Piezoelectric, magnetic and shape memory alloy (SMA) materials offer unique capabilities for energy harvesting and reduced energy requirements in aerospace, aeronautic, automotive, industrial and biomedical applications. However, all of these materials exhibit creep, rate-dependent hysteresis, and constitutive nonlinearities that must be incorporated in models and model-based control designs to achieve their full potential. Furthermore, models and control designs must be constructed in a manner that incorporates parameter and model uncertainties and permits predictions with quantified uncertainties. In this presentation, we compare the Euler-Bernoulli and Timoshenko beam models for a cantilever beam with an applied PZT patch to illustrate parameter estimation in the presence of model discrepancy.

This content is only available via PDF.
You do not currently have access to this content.