A globally convergent and fully coupled magnetomechanical model for 3D magnetostrictive systems is presented. In magnetostrictive actuators, magnetic field and stress inputs generate magnetic flux density and strain. We refer to models that follow this scheme as direct models (no relation to the direct magnetomechanical effect). In certain design and control situations, inverse models are necessary in which the magnetic field and stress are found from specified magnetic flux density and strains. This inversion typically involves an iterative procedure, which may be prone to convergence issues. An inverse model approach is proposed for arbitrary magnetostrictive materials. The inversion requirement is a continuous and second order differentiable direct model for any chosen magnetostrictive material. The approach is globally convergent, which makes it ideal for use in finite element frameworks. The premise of the proposed iterative system model is to constitute a recursive correction formula based on second order approximations of a novel scalar error function which allows to achieve a faster convergence rate. A continuation approach is then used to achieve global convergence for arbitrary input parameters. To illustrate, Galfenol is chosen as the magnetostrictive material, and analytical derivations of the Jacobian and Hessian matrices are presented. Finally, the computational efficiency of the proposed approach is shown to compare favorably against existing models.
Skip Nav Destination
ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 8–10, 2014
Newport, Rhode Island, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4614-8
PROCEEDINGS PAPER
Fast and Globally Convergent Nonlinear System Model for 3D Magnetostrictive Systems
Hafez Tari,
Hafez Tari
Ohio State University, Columbus, OH
Search for other works by this author on:
Marcelo J. Dapino
Marcelo J. Dapino
Ohio State University, Columbus, OH
Search for other works by this author on:
Hafez Tari
Ohio State University, Columbus, OH
Marcelo J. Dapino
Ohio State University, Columbus, OH
Paper No:
SMASIS2014-7714, V001T03A040; 11 pages
Published Online:
December 8, 2014
Citation
Tari, H, & Dapino, MJ. "Fast and Globally Convergent Nonlinear System Model for 3D Magnetostrictive Systems." Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation. Newport, Rhode Island, USA. September 8–10, 2014. V001T03A040. ASME. https://doi.org/10.1115/SMASIS2014-7714
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Monitoring Human Body Joint Rotations Based on Wearable Magnetic Strap Modules and the Jacobian Matrix of Magnetic Fields
ASME J of Medical Diagnostics (May,2020)
Stress-Strain Behavior of a Smart Magnetostrictive Actuator for a Bone Transport Device
J. Med. Devices (December,2008)
Experimental Implementation of a Hybrid Nonlinear Control Design for Magnetostrictive Actuators
J. Dyn. Sys., Meas., Control (July,2009)
Related Chapters
A New Exploratory Neural Network Training Method
Intelligent Engineering Systems through Artificial Neural Networks, Volume 16
Conclusion
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Dynamic Simulations to Become Expert in Order to Set Fuzzy Rules in Real Systems
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)