Broadband piezoelectric energy harvesting solutions from ambient loading have been extensively studied with the purpose of increasing the efficiency of vibration-based harvesters. Most of the previously developed methods focus on the transducer’s properties and configurations, and require vibration input excitations. In contrast, we have previously experimentally shown a mechanical energy concentrator system that exploits the quasi-static input deformations (strains) generated within the structure and induces an amplified amplitude and frequency up-converted response. The tested energy converting devices transform low-amplitude and low-rate service strains into an amplified vibration input to the piezoelectric transducer. The snap-through behavior of bilaterally constrained columns was used as the mechanism for energy concentration. This paper presents a theoretical model, based on energy method, for the post-buckling behavior of a bilaterally constrained slender column under quasi-static axial loadings. The total potential energy of the buckled elastic element is the sum of the potential energies due to bending, compression and external applied force. The transverse deflection is limited by the lateral constraints. Therefore a constrained minimization problem of the total potential energy is solved to determine the equilibrium configurations. Equilibrium transitions are correlated to the changes in the magnitude of the weight coefficients that define the contribution of buckling modes to the deflected shape. Transition states are defined in terms of the axial displacements, axial forces, column shape, and energies stored in the system.
Skip Nav Destination
ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 8–10, 2014
Newport, Rhode Island, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4614-8
PROCEEDINGS PAPER
Model Development for Dynamic Energy Conversion in Post-Buckled Multi-Stable Slender Columns
Wassim Borchani,
Wassim Borchani
Michigan State University, East Lansing, MI
Search for other works by this author on:
Nizar Lajnef,
Nizar Lajnef
Michigan State University, East Lansing, MI
Search for other works by this author on:
Rigoberto Burgueño
Rigoberto Burgueño
Michigan State University, East Lansing, MI
Search for other works by this author on:
Wassim Borchani
Michigan State University, East Lansing, MI
Nizar Lajnef
Michigan State University, East Lansing, MI
Rigoberto Burgueño
Michigan State University, East Lansing, MI
Paper No:
SMASIS2014-7595, V001T03A023; 6 pages
Published Online:
December 8, 2014
Citation
Borchani, W, Lajnef, N, & Burgueño, R. "Model Development for Dynamic Energy Conversion in Post-Buckled Multi-Stable Slender Columns." Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation. Newport, Rhode Island, USA. September 8–10, 2014. V001T03A023. ASME. https://doi.org/10.1115/SMASIS2014-7595
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Characterizing Dynamic Transitions Associated With Snap-Through: A Discrete System
J. Comput. Nonlinear Dynam (January,2013)
Experiments on Probing the Configuration Space of Post-Buckled Panels
J. Appl. Mech (December,2020)
Hidden (A)Symmetries of Elastic and Plastic Bifurcation
Appl. Mech. Rev (August,1986)
Related Chapters
Members in Compression
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range
Axially Loaded Members
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines