A mechanical wave is generated as a result of an oscillating body interacting with the well-defined medium and it propagates through that medium transferring energy from one location to another. The ability to generate and control the motion of the mechanical waves through the finite medium opens up the opportunities for creating novel actuation mechanisms. The focus of this study is on understanding the traveling wave generation and propagation by establishing the relationships that illustrate the role of structural and electromechanical parameters. A brass beam with free-free boundary conditions was selected to be the medium through which the wave propagation occurs. Two piezoelectric elements were bonded on the opposite ends of the beam and were used to generate the controlled oscillations. Excitation of the piezoelectrics results in coupled system dynamics that can be translated into generation of the waves with desired characteristics. Theoretical analysis based on the distributed parameter model and experiments were conducted to provide the comprehensive understanding of the wave generation and propagation behavior.

This content is only available via PDF.
You do not currently have access to this content.