A hybrid torsional vibration damper is proposed in this study incorporating a conventional Centrifugal Pendulum Vibration Absorber (CPVA) and a Magnetorheological (MR) damper. While CPVAs are simple and reliable passive torsional vibration absorbers, their performance is limited to the designed tune conditions. MR dampers have recently received considerable attention due to their inherent fail-safe feature, low power requirement and capability to attenuate vibration under unpredictable environmental conditions. The present research aims at developing a novel hybrid torsional vibration damper combining conventional CPVA with the MR damper capable of suppressing torsional vibration at varying excitation frequencies. This research presents results from analytical investigation of rotor systems integrated with the proposed hybrid torsional vibration damper. The system under investigation consists of a rotor with attached hybrid torsional MR damper subjected to an external harmonic torque. The CPVA has been connected to the cylindrical housing of the MR damper. Different cases have been investigated including: 1- Rotor system without any damper, 2- Rotor system with only CPVA, 3- Rotor system with only torsional MR damper and 4- Rotor system with the hybrid torsional damper. Results for each case have been illustrated and compared against one another.

This content is only available via PDF.
You do not currently have access to this content.