We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively selecting the size of the actuators on the fly based on the instantaneous required load, versus the traditional method wherein actuators are sized for the maximum required load, and energy is wasted by oversized actuators most of the time. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper will propose this actuator concept and show preliminary results of the design, fabrication, and experimental characterization of three such bioinspired variable recruitment actuator prototypes.

This content is only available via PDF.
You do not currently have access to this content.