When a user explores over an object, mechanoreceptors in human’s fingertip dominantly detect small-scale shapes and textures on the surface of the object. For generating and conveying virtual tactile sensations to users, we developed a new flexible hybrid tactile display consisting of an electroactive polymer (EAP) module and an electro-vibration module. The EAP module was used to construct an ultra-thin 3×3 pin-array module for mimicking small-scale shapes on the object. Since each cell of the proposed 3×3 EAP module is independently actuated with high vertical stroke, it is enough to create various micro-shapes. The electro-vibration module was attached on the EAP module. The electro-vibration module consists of two plates coated with compliant electrodes. The electro-vibration module creates micro-vibration to imitate virtual texture on the objects. To design the proposed hybrid tactile display, the equations for the mechanical models of the proposed tactile display were derived. The working principle of the modules was verified based on the mechanical model. To control the developed combined tactile display, a high-volt multichannel controller was developed by using a high-volt DC-DC converter and opto-couplers. The proposed hybrid tactile display with its control system generates sufficient performances to create realistic and vivid virtual tactile sensations.

This content is only available via PDF.
You do not currently have access to this content.