This study investigates the evolution of filler particle networks using electrical and rheological property measurements. Polyvinylediene Flouride (PVDF) was used as the matrix thermoplastic polymer which was reinforced with multiwall carbon nanotubes (MWNT) as the filler phase using high shear twin screw extrusion mixing. Electrical conductivity and dielectric constant measurements were done using impedance spectroscopy. Viscosity and storage modulus measurements were performed using a dynamic rheometer. Morphologies of the composites were observed using scanning electron microscopy. The percolation behavior in electrical conductivity was determined to be 1.3 wt% MWNT content in PVDF. This is in contrast to the nanocomposite viscosity percolation threshold which occurred at 1.9 wt%.

This content is only available via PDF.
You do not currently have access to this content.