Magneto-active elastomers (also called magnetorheological elastomers) are most often used in vibration attenuation application due to their ability to increase in shear modulus under a magnetic field. These shear-stiffening materials are generally comprised of soft-magnetic iron particles embedded in a rubbery elastomer matrix. More recently researchers have begun fabricating MAEs using hard-magnetic particles such as barium ferrite. Under the influence of uniform magnetic fields these hard-magnetic MAEs have shown large deformation bending behaviors resulting from magnetic torques acting on the distributed particles and consequently highlight their ability for use as remotely powered actuators.
Using the magnetic-torque-driven hard-magnetic MAE materials and an unfilled silicone elastomer, this work develops novel composite geometries for actuation and locomotion. MAE materials are fabricated using 30% v/v 325 mesh barium ferrite particles in Dow Corning HS II silicone elastomers. MAE materials are cured in a 2T magnetic field to create magnetically aligned (anisotropic) materials as confirmed by vibrating sample magnetometry (VSM). Gelest optical encapsulant is used as the uniflled elastomer material.
Mechanical actuation tests of cantilevers in bending and of accordion folding structures highlight the ability of the material to perform work in moderate, uniform fields of μ0H = 150 mT. Computational simulations are developed for comparison. Folding structures are also investigated as a means to produce untethered locomotion across a flat surface when subjected to an alternating field similar to scratch drive actuators; geometries investigated show promising results.