Shape memory alloy (SMA) wire meshes are being investigated for their potential effectiveness as active layers in self-folding origami laminates. The currently studied meshes consist of two orthogonal sets of equally spaced parallel SMA wires. The modeling of self-folding laminates with SMA wire meshes becomes computationally demanding at full scale due to the expenses of accurately representing the bending segments of the SMA meshes. Modeling the wires as beam, shell, or three-dimensional entities can be used for such purposes; however, those options become difficult to implement due to the small dimensions of the mesh compared to the full scale self-folding system and the algorithmic complexity of considering the application of heating power to discrete wire regions. A solution to this problem is to model the SMA meshes using an equivalent lamina representation. In this work, an effective lamina model for the representation of the SMA wire meshes that accounts for thermoelastic and inelastic phase transformation behavior is developed. A reduced order version of the effective lamina model is implemented and validated against finite element simulations of an SMA wire mesh considering the same underlying 3D constitutive model. The results show that the effective lamina model accurately predicts the behavior of the fully modeled SMA wire mesh. Future work includes the calibration of the full version of the model and its implementation in a finite element framework.
Skip Nav Destination
ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 16–18, 2013
Snowbird, Utah, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5603-1
PROCEEDINGS PAPER
Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency
Edwin Peraza-Hernandez,
Edwin Peraza-Hernandez
Texas A&M University, College Station, TX
Search for other works by this author on:
Darren Hartl,
Darren Hartl
Texas A&M University, College Station, TX
Search for other works by this author on:
Dimitris Lagoudas
Dimitris Lagoudas
Texas A&M University, College Station, TX
Search for other works by this author on:
Edwin Peraza-Hernandez
Texas A&M University, College Station, TX
Darren Hartl
Texas A&M University, College Station, TX
Dimitris Lagoudas
Texas A&M University, College Station, TX
Paper No:
SMASIS2013-3094, V001T01A009; 10 pages
Published Online:
February 20, 2014
Citation
Peraza-Hernandez, E, Hartl, D, & Lagoudas, D. "Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency." Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation. Snowbird, Utah, USA. September 16–18, 2013. V001T01A009. ASME. https://doi.org/10.1115/SMASIS2013-3094
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Sliding Mode Control of Mechanical Systems Actuated by Shape Memory Alloy
J. Dyn. Sys., Meas., Control (January,2009)
An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys
J. Appl. Mech (November,2021)
Constitutive Modeling and Finite Element Analysis of the Formability
of TRIP Steels
J. Eng. Mater. Technol (July,2008)
Related Chapters
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2
Industrially-Relevant Multiscale Modeling of Hydrogen Assisted Degradation
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Fiber-Reinforced Plastic Pressure Vessels and ASME RTP-1–Reinforced Thermoset Plastic Corrosion-Resistance Equipment
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes