Vital components of inflatable antenna structures in light-weight satellites, Kapton© membranes, are prone to wrinkling due to high thermal gradients experienced in space; resulting in a decrease in performance. Simple, robust and compact actuators are required for automated removal of localized wrinkling in these membranes. Leveraging the large force and small displacement of Macro-Fibre Composites (MFCs) by mimicking the mechanics of the ciliary muscle in the human optical system, an actuator was designed and experimentally tested in the control of localized wrinkling of Kapton© in tension. Three configurations were built and tested utilizing M-5887-P1 MFC units. The force-displacement relationships were determined through testing. The control logic and circuit were developed. The actuator proved successful in local membrane wrinkling experiments. It was shown that by leveraging the high force and low displacement of MFCs a reliable actuator can be developed to effectively eliminate localized wrinkles in Kapton© membranes for space applications.

This content is only available via PDF.
You do not currently have access to this content.