We used three dimensional computer simulations to examine heat transport in a microchannel that encompasses a periodic array of biomimetic synthetic cilia. We modeled two different configurations of tilted cilia. Both configurations consisted of a grid of evenly spaced cilia with length L and square cross-section 0.1L×0.1L. The cilia were spaced at a distance δx between cilium rows and the inter-cilia spacing in the rows was fixed at δz = 0.25L for one configuration and δz = 0.5L for the other. The channel was filled with a viscous fluid and its top and bottom walls were maintained at different temperatures. The cilia were attached to the bottom channel wall at a specific angle and were actuated by a periodic external force applied vertically to their free ends. The periodical beating of cilia induces fluid mixing inside the fluid that facilitates heat transport. To model this multi-component system, we employed a thermal lattice Boltzmann model coupled with the lattice spring model. In order to investigate how the active cilia affect the heat transfer between the channel walls we varied three parameters in the system. Specifically, we systematically changed the tilt of the cilia, the spacing between cilia and the oscillation frequency of the cilia. Our investigations have allowed us to determine the optimal conditions for using cilia to increase the heat flux from a heated surface. Our findings could be useful for developing new methods for temperature control in microscale devices.
Skip Nav Destination
ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 19–21, 2012
Stone Mountain, Georgia, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4510-3
PROCEEDINGS PAPER
Designing Active Surface Structures to Regulate Heat Transport in Microchannels
Zachary Grant Mills,
Zachary Grant Mills
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Basat Aziz,
Basat Aziz
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Alexander Alexeev
Alexander Alexeev
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Zachary Grant Mills
Georgia Institute of Technology, Atlanta, GA
Basat Aziz
Georgia Institute of Technology, Atlanta, GA
Alexander Alexeev
Georgia Institute of Technology, Atlanta, GA
Paper No:
SMASIS2012-8121, pp. 649-655; 7 pages
Published Online:
July 24, 2013
Citation
Mills, ZG, Aziz, B, & Alexeev, A. "Designing Active Surface Structures to Regulate Heat Transport in Microchannels." Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting. Stone Mountain, Georgia, USA. September 19–21, 2012. pp. 649-655. ASME. https://doi.org/10.1115/SMASIS2012-8121
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Electrohydrodynamic Conduction Driven Single- and Two-Phase Flow in Microchannels With Heat Transfer
J. Heat Transfer (October,2013)
Numerical Analysis of Heat Transfer Enhancement in a Micro-Channel Due to Mechanical Stirrers
J. Thermal Sci. Eng. Appl (February,2021)
Experimental Investigation of a Flat-Plate Oscillating Heat Pipe With Groove-Enhanced Minichannels
J. Thermal Sci. Eng. Appl (December,2020)
Related Chapters
Application of Universal Functions
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Two-Stage Liquid Desiccant Dehumidification∕Regeneration
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine