A finite-element analysis of stable crack growth in superelastic Shape Memory Alloys (SMAs) is carried out for plane strain, mode I loading. The small-scale transformation assumption is employed in the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law adopts the classical rate-independent small-strain flow theory for the evolution equation of the transformation strains. The crack is assumed to propagate quasi-statically with the energy release rate maintained at a critical value; the analysis is accomplished by means of the Virtual Crack Closure Technique (VCCT). Resistance curves, obtained for a range of thermomechanical parameters, show enhanced fracture toughness.

This content is only available via PDF.
You do not currently have access to this content.