This paper presents the design, the prototype construction and the experimental testing of a shape memory actuator implementing the concept of elastic compensation put forward in a previous publication by the authors. A two-SMA actuator, compensated by a spring-assisted bistable rocker-arm, is designed theoretically to provide nearly-constant output forces, then it is built and characterized under laboratory conditions. The test results are in good agreement with the theoretical predictions and show that, for given output force, the compensated actuator produces net strokes from 2.5 to 22 times greater than an identical uncompensated actuator. The stroke improvement increases dramatically with the generated output force. Weaknesses of the compensated design are the heavier average stress sustained by the SMA springs, which could impair the fatigue life, and a higher response time.

This content is only available via PDF.
You do not currently have access to this content.