On avian wings, significant flow control is accomplished using localized control loops, both active and passive, between leading- and trailing-edge feathers. Conversely, most man-made flight control systems respond to perturbations in inertial measurements (global states) rather than the flow itself (local states). This paper presents the design of a distributed, biomimetic flow control system and a characterization of its performance compared to a wing with traditional control surfaces relying on inertial measurements. This new design consists of a skeletal wing structure with a network of feather-like panels installed on the upper and lower surfaces, extending beyond the trailing edge and replacing leading- and trailing-edge flaps/ailerons. Each feather is able to deform into and out of the boundary layer, thus permitting local airflow manipulation and transpiration through the wing. For this study, two airfoil sections are compared — a standard wing section with a trailing-edge flap, and section with multiple trailing-edge feathers. COMSOL Multiphysics is used to model the flow field under various flight conditions and flap deflections. A dynamics model of the wing is also simulated in order to compute the disturbances caused by wind gusts. Continuous gusts are simulated, and the disturbance rejection capabilities of the baseline and feathered wing cases are compared.
Skip Nav Destination
ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 18–21, 2011
Scottsdale, Arizona, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5472-3
PROCEEDINGS PAPER
The Development of a Closed-Loop Flight Controller for Localized Flow Control and Gust Alleviation Using Biomimetic Feathers on Aircraft Wings Available to Purchase
Christopher J. Blower,
Christopher J. Blower
George Washington University, Washington, DC
Search for other works by this author on:
Adam M. Wickenheiser
Adam M. Wickenheiser
George Washington University, Washington, DC
Search for other works by this author on:
Christopher J. Blower
George Washington University, Washington, DC
Adam M. Wickenheiser
George Washington University, Washington, DC
Paper No:
SMASIS2011-5109, pp. 699-705; 7 pages
Published Online:
February 7, 2012
Citation
Blower, CJ, & Wickenheiser, AM. "The Development of a Closed-Loop Flight Controller for Localized Flow Control and Gust Alleviation Using Biomimetic Feathers on Aircraft Wings." Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2. Scottsdale, Arizona, USA. September 18–21, 2011. pp. 699-705. ASME. https://doi.org/10.1115/SMASIS2011-5109
Download citation file:
26
Views
Related Proceedings Papers
A Bio-Inspired Aircraft Design Concept
FEDSM2012
Related Articles
Exploring the Use of Functional Models in Biomimetic Conceptual Design
J. Mech. Des (December,2008)
Minimizing Inlet Distortion for Hybrid Wing Body Aircraft
J. Turbomach (May,2012)
Passive Flow Control on Low-Pressure Turbine Airfoils
J. Turbomach (October,2003)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition