The outer ears (pinnae) of many bat species are smart structures that undergo non-rigid deformations controlled through an intricate muscular actuation system. It is hypothesized that such non-rigid changes in the physical shape of the pinnae provide a substrate for adaption of the spatial sensitivity (reception beampattern) of the animals’ biosonar system on a short time scale. In the research presented here, a simplified biomimetic baffle shape was developed to investigate the functional properties of non-rigidly deforming baffles. This prototype had the shape of an obliquely truncated cone that was augmented with local shape features that aided in achieving a biomimetic deformation pattern and may also have direct acoustic effects on the device beampattern. The prototype was manufactured from a thin sheet of rubber and actuated parsimoniously through a single linear actuator. Despite its comparative simplicity, the prototype device was able to reproduce the deformation pattern seen in the ears of horseshoe bats qualitatively. Biomimetic baffle deformations resulted in profound, qualitative, and quantitative changes to the beampattern. Future research will investigate how the time-variant beampatterns relate to the specifics of the deformation patterns and how they could be controlled and used in an engineering context.

This content is only available via PDF.
You do not currently have access to this content.