Recently, flexible matrix composite (FMC) actuators were demonstrated in a robotic fish for swimming. When actuated at a specific frequency in the experiments, the sinusoidal component of the thrust was eliminated, leaving only a constant thrust. This elimination of the sinusoidal component of the thrust is due to the hydroelastic tailoring of the tail stiffness with the actuation frequency. The FMC actuators are pressure-driven muscle-like actuators capable of large displacements as well as large blocking forces. The FMC actuators can also exhibit a large change in stiffness through simple valve control when the working fluid has a high bulk modulus. Several analytical models have been developed that capture the geometrical and material nonlinearities, the compliance of the inner liner, and entrapped air in the fluid. This paper focuses on the inter fiber compaction in the composite laminate, which is shown to reduce the effective closed-valve stiffness. In this paper, a new analytical model considering the inter fiber compaction effect as well as the material and geometric nonlinearities is developed. Analysis and experimental results demonstrate that the new compaction model can improve the prediction of the response behavior of the actuator.
Skip Nav Destination
ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 18–21, 2011
Scottsdale, Arizona, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5472-3
PROCEEDINGS PAPER
Modeling, Analysis, and Experiments of Interfiber Compaction Effects in FMC Actuators for Bio-Inspired Applications
Zhiye Zhang,
Zhiye Zhang
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Michael Philen
Michael Philen
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Zhiye Zhang
Virginia Polytechnic Institute and State University, Blacksburg, VA
Michael Philen
Virginia Polytechnic Institute and State University, Blacksburg, VA
Paper No:
SMASIS2011-5092, pp. 653-662; 10 pages
Published Online:
February 7, 2012
Citation
Zhang, Z, & Philen, M. "Modeling, Analysis, and Experiments of Interfiber Compaction Effects in FMC Actuators for Bio-Inspired Applications." Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2. Scottsdale, Arizona, USA. September 18–21, 2011. pp. 653-662. ASME. https://doi.org/10.1115/SMASIS2011-5092
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Consolidation-Driven Defect Generation in Thick Composite Parts
J. Manuf. Sci. Eng (July,2018)
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part I: Modeling and Analysis
J. Dyn. Sys., Meas., Control (March,2013)
Pressurized Infusion: A New and Improved Liquid Composite Molding Process
J. Manuf. Sci. Eng (January,2019)
Related Chapters
A Review on Prediction over Pressured Zone in Hydrocarbon Well Using Seismic Travel Time through Artificial Intelligence Technique for Pre-Drilling Planing
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Stiffening Mechanisms
Introduction to Plastics Engineering
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2