The use of elastic wave based Structural Health Monitoring has shown its usefulness in both characterizing and diagnosing composite structures. Techniques using elastic wave SHM are being developed to allow for improved efficiency and assurance in all stages of space structure development and deployment. These techniques utilize precise understanding of wave propagation characteristics to extract meaningful information regarding the health and validity of a component, assembly, or structure. However, many of these techniques focus on the diagnostic of traditional, isotropic materials, and questions remain as to the effect of the orthotropic properties of resin matrix composite material on the propagation of elastic waves. As the demands and expectations placed upon composite structures continue to expand in the space community, these questions must be addressed to allow the development of elastic wave based SHM techniques that will enable advancements in areas such as automated build validation and qualification, and in-situ characterization and evaluation of increasingly complex space structures. This study attempts to aid this development by examines the effect of cross ply, off-axis fiber orientation on the propagation characteristics of lamb waves. This is achieved by observing the result of symmetric and anti-symmetric wave propagation across materials in cases containing both off-axis and axially-aligned elements. In both cases the surface plies of the test specimen are axially aligned with the wave propagation direction. Using these results, the relative effect of core ply orientation on lamb wave propagation, and lamb wave sensitivity to bulk properties, or alternatively, the dominance of surface properties on propagation characteristics, can be seen, and this information can be used to aid in future research and application of lamb waves for interrogation of advanced, high-strain composite space structures. It was found that the core orientation caused significant variation in the S0 wave velocity, while yielding little influence on the A0 wave velocity.

This content is only available via PDF.
You do not currently have access to this content.