Knowledge of the damage location in composite structures is a necessary output for both Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Although several damage localization approaches using a triangulation method and Time-of-Flight (ToF) of guided waves have been reported in literature, the damage localization technique is still not mature for composite structures with complex material properties, varying thickness and complex geometries. This paper investigates the development of a new approach for SHM and damage localization using a guided wave based active sensing system. In contrast to the traditional ellipse method, the proposed method does not require the information of structural thickness, ToF, or the estimation of group velocities of each guided wave mode at different propagation angles, which is one of the main limitations of most current ToF methodologies involving composites. This approach uses time-frequency analysis to calculate the difference of the ToF of the converted modes for each sensor signal. The damage location and the group velocity are obtained by solving a set of nonlinear equations. The proposed method can be used for composite structures with unknown lay-up and thickness. To validate the proposed method, experiments were conducted on both composite plates and stiffened composite panels. Eight piezoelectric (PZT) transducers were surface-bonded on each composite specimen and used in four pairs. The PZT transducers in each pair were bonded close to each other. In the PZT array, one PZT transducer from one PZT pair was used as the actuator and the other three pairs were used as sensors. A windowed cosine signal was used as the excitation signal. The locations of the delaminations in the composite specimens were validated using a flash thermography system. The accuracy of the proposed method in localizing delaminations was examined through comparison with the experimental measurements.

This content is only available via PDF.
You do not currently have access to this content.