Constant-Force actuators based on Dielectric Elastomers (DE) can be obtained by coupling a DE film with particular compliant frames whose structural properties must be carefully designed. In any case, the practical achievement of a desired force profile can be quite a challenging task owing to the time-dependent phenomena which affect the DE electromechanical response. Within this scenario, a hyper-viscoelastic model of a rectangular Constant-Force actuator is reported. The model, based on the Bond Graph formalism, can be used as an engineering tool when designing and/or controlling actuators which are expected to work under given nominal conditions. Numerical simulations are provided which predicts the system response to fast changes in activation voltage and actuator position as imposed by an external user.

This content is only available via PDF.
You do not currently have access to this content.