An important issue in the field of energy harvesting through piezoelectric materials is the design of simple and efficient structures which are multi-frequency in the ambient vibration range. This paper deals with the experimental assessment of four fractal-inspired multi-frequency structures for piezoelectric energy harvesting. These structures, thin plates of square shape, were proposed and numerically analyzed, with regard to their modal response, in a previous work by the author. The aim of this work is twofold. First, to assess the modal response of these structures through an experimental investigation. Second, to evaluate, through computational simulation, the performance of a piezoelectric converter prototype relying on one of these fractal-inspired structures. The four fractal-inspired structures are examined experimentally in the range between 0 and 100 Hz, both with regard to eigenfrequencies and eigenmodes. In the same frequency range are investigated the modal response and power output of a converter prototype.

This content is only available via PDF.
You do not currently have access to this content.