The transient behavior of MRF actuators is an important property for certain applications that is mainly affected by three delays, occurring from the dynamic properties of the coil current, the magnetic field and the torque generation by the MRF. In order to investigate the transient behavior of the generated torque with respect to the magnetic field, which is mainly affected by the motion of the MR particles in the carrier fluid, the mentioned response time of the electrical and magnetic domains must be in an appropriated ratio in comparison to the MRF response time to obtain reliable results by experiments. Therefore a special disc-type test actuator with outstanding dynamics is designed that minimizes the delays by the use of an ultrafast current control and a magnetic core made of soft ferrite material for preventing the effects of eddy currents. For the experimental investigation of the transient behavior of MR fluids, the small signal as well as the large signal behavior is analyzed for different test signals and load conditions of the actuator. Various results of the investigated transient behavior are shown finally for two different MR fluids featuring response times of about 1 ms for the fluid itself and switching times of about 4 ms for the MRF actuator.

This content is only available via PDF.
You do not currently have access to this content.