With the aim to decrease the uncertainties of structural damage detection, two fusion models are presented in this paper. The first one is a weighted and selective fusion method for combing the multi-damage detection methods based on the integration of artificial neural network, Shannon entropy and Dempster-Shafer (D-S) theory. The second one is a D-S based approach for combing the damage detection results from multi-sensors data sets. Numerical study on the Binzhou Yellow River Highway Bridge and an experimental of a 20-bay rigid truss structure were carried out to validate the uncertainties decreasing ability of the proposed methods for structural damage detection. The results show that both of the methods proposed are useful to decrease the uncertainties of damage detection results.

This content is only available via PDF.
You do not currently have access to this content.