Availability of self-healing on the thermal shock resistance of ceramic components was investigated. Using gas quenching method, the crack-healed alumina-18 vol% SiC composite, which has excellent self-healing ability, was applied to thermal shock of the arbitrary quenching rate. The procedure could give rise to the thermal stress fracture at high temperature. The critical quenching rate at thermal stress fracture of the healed specimen was found to be 6.47 K/s, corresponding to the thermal stress of 452.3 MPa. Alternatively, that of the cracked specimen was found to be 5.02 K/s, corresponding to the thermal stress of 350 MPa. From the obtained results, usage of self-healing was confirmed to improve extremely thermal shock resistance. The present result suggests that usage of self-healing gives a large advantage to design the high temperature ceramic components, because the mechanically reliable design and thermal shock resistance cannot coexist due to low thermal conductivity.

This content is only available via PDF.
You do not currently have access to this content.