Structures and control systems of smart laminated composites consisting of graphite-epoxy composites and piezoelectric actuators are designed optimally for the vibration suppression. Placements of piezoelectric actuators, lay-up configurations of laminated composite plates and the H2 control system are employed as design variables and are optimized simultaneously by a simple genetic algorithm (SGA). An objective function is H2 performance with assuming that the state feedback is available. A multidisciplinary design optimization is performed with above three design variables and then the output feedback system is reconstructed with the dynamic compensator based on the linear matrix inequality (LMI) approach. Optimization results show that the optimized smart composite successfully realizes vibration suppression of the system and it is confirmed that the present multidisciplinary design optimization technique is quite efficient to the smart composites.

This content is only available via PDF.
You do not currently have access to this content.