Bulk barium titanate (BaTiO3 ) ceramic specimens with bimodal microstructures are prepared and their dielectric and fatigue strengths are investigated under an alternating current (AC) electric field and a direct current (DC) electric field. It is found that under AC electrical loading, both the dielectric and fatigue strengths decrease with increasing amount of coarse abnormal grains. The scatter of the AC fatigue strength is characterized with the Weibull statistics. The extent of scatter of the AC fatigue strength data correlates strongly with the size distribution of the coarse grains. Such correlation is resulted from the presence of intrinsic defects within the microstructure. For DC electrical loading, the time to failure of the specimens with coarse abnormal grains is significantly shorter than the lifetimes of the specimens with only small normal grains. It is found that under a DC electric field of 6 MVm−1, the BaTiO3 specimens would fail within 200 h when abnormal grains are present in the microstructure. However, the lifetimes of the specimens containing abnormal grains vary significantly from one to another. The Weibull statistical analysis indicates that the amount of abnormal grains has little influence on the lifetime performance of bulk BaTiO3 ceramics under large DC electric fields. In most of the failed BaTiO3 specimens under DC electrical loading, regardless of their lifetimes, large through-thickness round holes with recrystallization features are present. A mixed failure mode consisting of avalanche and thermal breakdowns is proposed for the failed specimens.

This content is only available via PDF.
You do not currently have access to this content.