Physically encapsulated droplet-interface bilayers are formed by confining aqueous droplets surrounded by lipid mono-layers in connected compartments within a solid substrate. The droplets reside within each compartment and are positioned on fixed electrodes built into the solid substrate. Full encapsulation of the network is achieved with a solid cap that inserts into the substrate to form a closed volume. Encapsulated networks provide increased portability over unencapsulated networks by limiting droplet movement and by integrating the electrodes into the supporting fixture. The formation of encapsulated droplet-interface bilayers is confirmed with electrical impedance spectroscopy and cyclic voltammetry is also used to measure the effect of alamethicin proteins incorporated into the resulting lipid bilayers. The durability of the networks is quantified using a mechanical shaker to oscillate the bilayer in a direction transverse to the plane of the membrane and the results show that single droplet-interface bilayers can withstand several g’s of acceleration. Observed failure modes include both droplet separation and bilayer rupturing, where the geometry of the supporting substrate and the presence of electrodes are key contributors. Physically encapsulated DIBs can be shaken, moved, and inverted without bilayer failure, enabling the creation of portable, protein-powered devices.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4897-5
PROCEEDINGS PAPER
Durable Biomolecular Assemblies for Protein-Powered Device Concepts Available to Purchase
Stephen A. Sarles,
Stephen A. Sarles
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Donald J. Leo
Donald J. Leo
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Stephen A. Sarles
Virginia Tech, Blacksburg, VA
Donald J. Leo
Virginia Tech, Blacksburg, VA
Paper No:
SMASIS2009-1346, pp. 665-674; 10 pages
Published Online:
February 16, 2010
Citation
Sarles, SA, & Leo, DJ. "Durable Biomolecular Assemblies for Protein-Powered Device Concepts." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures. Oxnard, California, USA. September 21–23, 2009. pp. 665-674. ASME. https://doi.org/10.1115/SMASIS2009-1346
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Constitutive Modeling of the Stress-Stretch Behavior of Two-Dimensional Triangulated Macromolecular Networks Containing Folded Domains
J. Appl. Mech (January,2008)
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
J. Appl. Mech (July,2006)
Design of Bioimpedance Spectroscopy Instrument With Compensation Techniques for Soft Tissue Characterization
J. Med. Devices (June,2015)
Related Chapters
Conclusions
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Identification of Membrane Protein Interactions with an Ensemble Classifier
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices