Damage on woven composites is a phenomenon that is difficult to characterize due to complex weave geometry. A woven composite wing structure adds to the complexity of characterizing damage through Fiber Bragg Grating (FBG) sensors. The present paper studies the FBG response and damage characterization of foam core and hollow composite wings. Plain and twill weave wings were manufactured and subjected to low energy (52.5J) and high energy (150J) impacts. Damage was assessed using FBG sensors, flash thermography, and visual inspection of the wings. Two FBG sensors were placed along the chord length and the spanwise direction at equal distances from the impact site to measure the axial strain as a function of time. The main failure modes of foam core wings were fiber breakage and foam crushing for high energy impacts, while core crushing and delamination between the core and the composite wing was found for low energy impacts. The hollow wings had a significant reduction in stiffness, resulting in a ripple effect where the wing would go into tension, then compression. This phenomenon varied depending on the location of the sensors on the wing. Although the impact zone was near the middle of the chord length of the wing, the resulting stress has caused large damage at the leading edge and significant debonding at the trailing edge of the hollow wing. An FE model was created to validate the experimental results and showed good correlation between the high stress areas in the model, the FBG response, and the damage sites on the wing.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4897-5
PROCEEDINGS PAPER
Damage Characterization of Composite Wing Subjected to Impact Loading: An Experimental Study Available to Purchase
Cristobal Hiche,
Cristobal Hiche
Arizona State University, Tempe, AZ
Search for other works by this author on:
Clyde K. Coelho,
Clyde K. Coelho
Arizona State University, Tempe, AZ
Search for other works by this author on:
Albert Moncada,
Albert Moncada
Arizona State University, Tempe, AZ
Search for other works by this author on:
Masoud Yekani Fard,
Masoud Yekani Fard
Arizona State University, Tempe, AZ
Search for other works by this author on:
Aditi Chattopadhyay
Aditi Chattopadhyay
Arizona State University, Tempe, AZ
Search for other works by this author on:
Cristobal Hiche
Arizona State University, Tempe, AZ
Clyde K. Coelho
Arizona State University, Tempe, AZ
Albert Moncada
Arizona State University, Tempe, AZ
Masoud Yekani Fard
Arizona State University, Tempe, AZ
Aditi Chattopadhyay
Arizona State University, Tempe, AZ
Paper No:
SMASIS2009-1420, pp. 573-580; 8 pages
Published Online:
February 16, 2010
Citation
Hiche, C, Coelho, CK, Moncada, A, Yekani Fard, M, & Chattopadhyay, A. "Damage Characterization of Composite Wing Subjected to Impact Loading: An Experimental Study." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures. Oxnard, California, USA. September 21–23, 2009. pp. 573-580. ASME. https://doi.org/10.1115/SMASIS2009-1420
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Dynamic Response of Orthogonal Three-Dimensional Woven Carbon Composite Beams Under Soft Impact
J. Appl. Mech (December,2015)
Response of Resin Transfer Molded (RTM) Composites Under Reversed Cyclic Loading
J. Eng. Mater. Technol (January,1996)
Impact on Laminated Composite Materials
Appl. Mech. Rev (April,1991)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Introduction
Computer Vision for Structural Dynamics and Health Monitoring
Response of Thick, Notched Laminates Subjected to Tension-Compression Cyclic Loads
Composite Materials: Fatigue and Fracture