Active knits are a unique architectural approach to meet the industrial need for high strain and simultaneous force generation. This paper presents an analytical state-based model to predict the actuation response of a Shape Memory Alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined based on the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using Elastica Theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. The model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle. Throughout the experiments, large strains (up to 250% recoverable, over 50% actuation strain) against moderate forces (order of tens of Newtons) were achieved which demonstrates promise for a wide range of applications.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4897-5
PROCEEDINGS PAPER
Two-Dimensional Analytical Model and Experimental Validation of Garter Stitch Knitted Shape Memory Alloy Actuator Architecture
Julianna Abel,
Julianna Abel
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Jonathan Luntz,
Jonathan Luntz
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Diann Brei
Diann Brei
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Julianna Abel
University of Michigan, Ann Arbor, MI
Jonathan Luntz
University of Michigan, Ann Arbor, MI
Diann Brei
University of Michigan, Ann Arbor, MI
Paper No:
SMASIS2009-1426, pp. 353-368; 16 pages
Published Online:
February 16, 2010
Citation
Abel, J, Luntz, J, & Brei, D. "Two-Dimensional Analytical Model and Experimental Validation of Garter Stitch Knitted Shape Memory Alloy Actuator Architecture." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures. Oxnard, California, USA. September 21–23, 2009. pp. 353-368. ASME. https://doi.org/10.1115/SMASIS2009-1426
Download citation file:
28
Views
Related Proceedings Papers
Design and Analysis of SMA Woven Fabric
SMASIS2018
Related Articles
Conglomerate Stabilization Curve Design Method for Shape Memory Alloy Wire Actuators With Cyclic Shakedown
J. Mech. Des (November,2011)
Experimental Nonlinear Dynamics of a Shape Memory Alloy Wire Bundle Actuator
J. Dyn. Sys., Meas., Control (March,2001)
Experimental Implementation of Opposed Shape Memory Alloy Wires for Actuator Control
J. Vib. Acoust (February,2015)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Reliability of Electronic Packaging
Essentials of Electronic Packaging: A Multidisciplinary Approach
Cyclic Deformation and Failure of Polymers
Cyclic Stress-Strain Behavior—Analysis, Experimentation, and Failure Prediction