Recent developments in low-power portable applications have accelerated research in the field of energy harvesting from ambient sources. Piezoelectric energy harvesters have remarkable potential to convert unused ambient vibrations into useful electrical energy that can subsequently provide power to low-power electronic systems for an infinite life span. This paper concerns the derivation of the mathematical model of a bimorph piezoelectric cantilever beam with distributed inertia, and its experimental validation. Previous research on such a component included a tip mass, which reduced the influence of the distributed inertia of the beam and restricted effective operation to low frequencies. The present research excludes the tip mass. The effects of backward electrical coupling on the mechanical properties of the harvester are investigated, particularly the dependence of the induced additional stiffness and damping on the electrical load and the piezoelectric properties. Both the model and the experimental results showed that the natural frequencies and the response amplitude of the harvester exhibited considerable shifts due to the electrical coupling, indicating change in stiffness and damping. The mechanical coupling effects on the electrical parameters (voltage, current and power output) are also analyzed.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4896-8
PROCEEDINGS PAPER
Distributed Parameter Modelling and Experimental Validation of a Piezoelectric Bimorph Cantilever Energy Harvester Available to Purchase
Sajid Rafique,
Sajid Rafique
University of Manchester, Manchester, UK
Search for other works by this author on:
P. Bonello
P. Bonello
University of Manchester, Manchester, UK
Search for other works by this author on:
Sajid Rafique
University of Manchester, Manchester, UK
P. Bonello
University of Manchester, Manchester, UK
Paper No:
SMASIS2009-1264, pp. 71-81; 11 pages
Published Online:
February 16, 2010
Citation
Rafique, S, & Bonello, P. "Distributed Parameter Modelling and Experimental Validation of a Piezoelectric Bimorph Cantilever Energy Harvester." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control. Oxnard, California, USA. September 21–23, 2009. pp. 71-81. ASME. https://doi.org/10.1115/SMASIS2009-1264
Download citation file:
11
Views
Related Articles
Modeling and Analysis of a Piezoelectric Energy Scavenger for Rotary Motion Applications
J. Vib. Acoust (February,2011)
Related Chapters
Supporting Systems/Foundations
Handbook on Stiffness & Damping in Mechanical Design
Modeling of a Micromechanical Energy Harvesting Device
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2