Conducting polymers can be utilized as actuators due to the materials’ ability to undergo volumetric change caused by an electrochemical stimulus. Polypyrrole is an attractive electroactive polymer and capable of producing large active stress. Its mechanical performance can be improved by increasing temperature. This work describes a custom built device that is capable of performing dynamic mechanical analyses and electrochemistry simultaneously. In addition, there is a temperature control system that heats (or cools) with Peltier thermoelectric devices controlled by a PID controller. In this study, we characterized the effect of temperature increase on polypyrrole actuation strength and stress rate. For approximately each increment of 10°C from 27–83°C, stiffness measurements and isometric tests in 1-butyl-3-methylimidazolium hexafluorophosphate were done with sample preloaded to about 4 MPa. Results showed that the stiffness decreased by 21% as the temperature was elevated from 25–80°C. The maximum charge per polymer volume increased by 983% as the temperature was increased from 27–75°C and started to level off past 75°C. The peak stress changed with temperature in a similar trend as maximum charge per volume. Peak stress was 0.2 MPa at 27°C and increased to 7 MPa as temperature was increased to 75°C. Moreover, the stress rate increased until 85°C. The results suggest that peak stress depends upon the ionic mobility as opposed to stiffness since both peak stress and charge start to plateau past 75°C.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4896-8
PROCEEDINGS PAPER
Characterizing the Effect of Temperature Increase on Polypyrrole Active Strength and Stress Rate
Yenmei Keng,
Yenmei Keng
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Priam V. Pillai,
Priam V. Pillai
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Ian W. Hunter
Ian W. Hunter
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Yenmei Keng
Massachusetts Institute of Technology, Cambridge, MA
Priam V. Pillai
Massachusetts Institute of Technology, Cambridge, MA
Ian W. Hunter
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
SMASIS2009-1258, pp. 53-60; 8 pages
Published Online:
February 16, 2010
Citation
Keng, Y, Pillai, PV, & Hunter, IW. "Characterizing the Effect of Temperature Increase on Polypyrrole Active Strength and Stress Rate." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control. Oxnard, California, USA. September 21–23, 2009. pp. 53-60. ASME. https://doi.org/10.1115/SMASIS2009-1258
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
A Systematic Approach for Designing Multifunctional Thermally Conducting Polymer Structures With Embedded Actuators
J. Mech. Des (November,2009)
Modeling Actuation of Ionomer Cilia in Salt Solution Under an External Electric Field
Letters Dyn. Sys. Control (January,2021)
Regularization Embedded Nonlinear Control Designs for Input-Constrained and Ill-Conditioned Thermal System
J. Dyn. Sys., Meas., Control (September,2004)
Related Chapters
Research on the Relation of the Dispels Voltage and Compensating Voltage in Flat FAIMS
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment
Thermoelectric Devices
Thermal Management of Microelectronic Equipment, Second Edition