Temperature changes caused by latent transformation heats are an integral part of the behavior of shape memory alloys and inevitably couple the thermal and the mechanical fields. This general behavior is covered by the Mu¨ller-Achenbach-Seelecke (MAS) model. Its versatility has been documented extensively in the literature. In the original formulation the MAS model is restricted to uniaxial states of stress in a SMA, which limits its application to cases where such stress states prevail, such as axial loading in wires and trusses, as well as pure beam bending, pure torsion and shrink-fit problems. Unreliable results, however are expected under arbitrary multiaxial loading conditions. To overcome this limitation we present an extension of the model capable of arbitrary stress/strain/temperature states in 3D. Our model adopts ideas presented by Xie but employs a different non-convex free energy function. Rate equations are employed to model temperature or stress/strain induced transformations between austenite and eight variants of martensite present in the model. As the MAS model, the multi-variant model is capable of fully-coupled thermo-mechanical processes which is shown by simulations of temperature-induced processes, quasiplasticity and pseudoelasticity under variable load directions. At the present level of sophistication, the model is restricted to single crystalline SMA. All examples are explained by the use of a standalone model implementation. The model is intended for future implementation into the finite-element-method environment ABAQUS™ to provide a powerful tool useful in the framework of engineering design studies, especially in situations which require non-isothermal conditions and phase transitions.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4896-8
PROCEEDINGS PAPER
Multivariant Formulation of the Thermomechanically Coupled Mu¨ller-Achenbach-Seelecke-Model for Shape Memory Alloys Available to Purchase
Oliver Kastner,
Oliver Kastner
Ruhr-University Bochum, Bochum, Germany
Search for other works by this author on:
Frank Richter,
Frank Richter
Ruhr-University Bochum, Bochum, Germany
Search for other works by this author on:
Gunther Eggeler
Gunther Eggeler
Ruhr-University Bochum, Bochum, Germany
Search for other works by this author on:
Oliver Kastner
Ruhr-University Bochum, Bochum, Germany
Frank Richter
Ruhr-University Bochum, Bochum, Germany
Gunther Eggeler
Ruhr-University Bochum, Bochum, Germany
Paper No:
SMASIS2009-1254, pp. 45-52; 8 pages
Published Online:
February 16, 2010
Citation
Kastner, O, Richter, F, & Eggeler, G. "Multivariant Formulation of the Thermomechanically Coupled Mu¨ller-Achenbach-Seelecke-Model for Shape Memory Alloys." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control. Oxnard, California, USA. September 21–23, 2009. pp. 45-52. ASME. https://doi.org/10.1115/SMASIS2009-1254
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Mechanical Behavior of an Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading
J. Eng. Mater. Technol (January,1999)
An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys
J. Appl. Mech (November,2021)
Effect of Phase Transformation on the Wear Behavior of NiTi Alloy
J. Eng. Mater. Technol (July,2010)
Related Chapters
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Basic Concepts
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range
The Thermo —Mechanical Analysis of Mechanical Packing (SEAL), Using Finite Element Method (FEM) — Results and Conclusions
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)