Shape memory alloys (SMAs) are used in many applications as actuators. The main drawbacks that limit the use of the SMAs in the field of micro-actuation are the low bandwidth and the unsatisfactory stroke. This paper contributes to enhancing the performances of SMA actuators by proposing a new SMA helical spring with hollow section. The hollow spring is modelled, then it is constructed and finally it is tested, comparing its performances with those of a spring with solid cross-section of equal stiffness and strength. Emptied of the inefficient material from its centre, the hollow spring features a lower mass (37% less) and an extremely lower cooling time (four times less). These results demonstrate that helical springs with hollow construction can be successfully exploited to realize SMA actuators with high bandwidth and stroke.

This content is only available via PDF.
You do not currently have access to this content.