Despite great strides in materials science and control, an automated surgical tool is still in the fiction pages due to the lack of a surgical tool employing a self-sensing actuator. In an attempt to fill this void, we present magnetoelectric materials as a solution for designing surgical tools. This paper discusses our ongoing work to model the dynamics of the magnetoelectric material for use in a control loop. The surgical tool is a two-segment magnetoelectric cantilever in which one of the two magnetoelectric segments is attached to a fixed support called the base. A floating segment called the cutting tip is attached to the base using a flexible hinge. The two-segment tool is placed in a remote magnetic field to generate the cutting force in the magnetoelectric tip. Displacement in the tip generates a proportional electrical response from the piezoelectric layer and serves as the self-sensing signal. The self-sensing signal from the two segments is used for operating the tool in closed loop operation. The dynamic characterization of the magnetoelectric cantilever in bending is derived from constitutive equations for the magnetoelectric material. The strain terms in the constitutive equation is expressed using generalized coordinates in the shape function for the cantilever in bending mode. The equivalent stiffness of the magnetoelectric cantilever is derived using variational principles for calculating the tip displacement in the cantilever.
Skip Nav Destination
ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 21–23, 2009
Oxnard, California, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4896-8
PROCEEDINGS PAPER
Characterization of Magnetoelectric Cantilever for Use as an Ablation Tool in Minimally Invasive Surgery Available to Purchase
Vishnu Baba Sundaresan,
Vishnu Baba Sundaresan
Virginia Commonwealth University, Richmond, VA
Search for other works by this author on:
Jatulasimha Atulasimha
Jatulasimha Atulasimha
Virginia Commonwealth University, Richmond, VA
Search for other works by this author on:
Vishnu Baba Sundaresan
Virginia Commonwealth University, Richmond, VA
Jatulasimha Atulasimha
Virginia Commonwealth University, Richmond, VA
Paper No:
SMASIS2009-1350, pp. 205-212; 8 pages
Published Online:
February 16, 2010
Citation
Sundaresan, VB, & Atulasimha, J. "Characterization of Magnetoelectric Cantilever for Use as an Ablation Tool in Minimally Invasive Surgery." Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control. Oxnard, California, USA. September 21–23, 2009. pp. 205-212. ASME. https://doi.org/10.1115/SMASIS2009-1350
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
A Model for Multi-Input Mechanical Advantage in Origami-Based Mechanisms
J. Mechanisms Robotics (December,2018)
Novel Mechanical Actuation of a Modular Laparoscopic Surgical Tool
J. Med. Devices (September,2008)
Harmonic Focus Case Study: Leading Innovation Through Unique User Research Methods and Tools
J. Med. Devices (June,2009)
Related Chapters
Design of Super-Precision Micro-Feed Tool Carrier Based on GMM
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)
System Constraints and Virtual Displacement
Dynamics of Particles and Rigid Bodies: A Self-Learning Approach
Structure of Magnetic Actuator
Magnetic Bearings for Mechanical Cardiac Assist Devices