The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to provide the flapping motion, a system that brings the disadvantage of a heavy flight platform. This phase of the BATMAV project presents a flight platform that features bat-inspired wings with a number of flexible joints to allow mimicking the kinematics of the real mammalian flyer. The bat was chosen after an extensive analysis of the flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large rage of speeds and allow remarkably maneuverable and agile flight. Bat skeleton measurements were taken and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping machines. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. Therefore, a desktop model was designed, fabricated and assembled in order to study and optimize the effect of various flapping patterns on thrust and lift forces. As a whole, the BATMAV project consists of four major stages of development: the current phase — design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.

This content is only available via PDF.
You do not currently have access to this content.