In this paper, the problem of designing a state feedback controller over a wide frequency range (0 – 1kHz) for a magnetostrictive actuator connected to a mechanical system is discussed. Our model for the magnetostrictive actuator includes hysteresis, classical and excess eddy current losses. The hysteresis nonlinearity is modeled using a classical Preisach operator, and it is assumed that the density function is approximately known. The feedback controller achieves uniform ultimate boundedness — a property weaker than global asymptotic stability when the trajectory to be tracked is zero — in the presence of exogenous disturbances and uncertainty in the model. The main objective of the paper is to demonstrate that knowledge of the induced emf can be used to eliminate the need for hysteresis compensation in the control scheme. The novelty of this work is that we utilize the induced emf in the actuator coil as an observed variable, and also demonstrate how this quantity can be measured in real-time. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve uniform ultimate bounded control without an explicit inverse computation (using least squares minimization or otherwise).
Skip Nav Destination
ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
October 28–30, 2008
Ellicott City, Maryland, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-4332-1
PROCEEDINGS PAPER
Robust Control of Magnetostrictive Actuators With Uncertain System
Dinesh B. Ekanayake,
Dinesh B. Ekanayake
Texas Tech University, Lubbock, TX
Search for other works by this author on:
Ram V. Iyer
Ram V. Iyer
Texas Tech University, Lubbock, TX
Search for other works by this author on:
Dinesh B. Ekanayake
Texas Tech University, Lubbock, TX
Ram V. Iyer
Texas Tech University, Lubbock, TX
Paper No:
SMASIS2008-541, pp. 429-436; 8 pages
Published Online:
July 13, 2009
Citation
Ekanayake, DB, & Iyer, RV. "Robust Control of Magnetostrictive Actuators With Uncertain System." Proceedings of the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2. Ellicott City, Maryland, USA. October 28–30, 2008. pp. 429-436. ASME. https://doi.org/10.1115/SMASIS2008-541
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Modeling and Control of a Magnetostrictive Tool Servo System
J. Dyn. Sys., Meas., Control (May,2008)
Convex Optimization Approach to Observer-Based Stabilization of Uncertain Linear Systems
J. Dyn. Sys., Meas., Control (December,2006)
Output–Feedback Regulation of the Contact-Force in High-Speed Train Pantographs
J. Dyn. Sys., Meas., Control (March,2004)
Related Chapters
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Computation and Experiment of the Eddy Current Losses in Canned Motor
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution